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New Correlation Functions for Viscosity Calculation
of Gases Over Wide Temperature and
Pressure Ranges
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The viscosity of 14 supercritical gases over a wide temperature�pressure range is
calculated with a new correlation scheme. Highly accurate realistic interatomic
potentials of the noble gases are used in the Chapman�Enskog calculation of
the zero-density viscosity and in the Rainwater�Friend theory to determine the
initial density dependence of the viscosity. At densities beyond the range of
the theory, a variant of the residual viscosity is developed. It is shown that the
temperature dependence of the residual viscosity function increases with the
number of atoms in the molecule. By including this temperature dependence,
the accuracy of the predicted results improves significantly. The accuracy of this
method is within the experimental uncertainties.

KEY WORDS: dense fluids; Rainwater�Friend theory; second viscosity virial
coefficient; viscosity.

1. INTRODUCTION

Predictive methods for the transport coefficients provide correlations that
can save untold hours of labor in the laboratory, in such a way that two
hours in the library can save three months in the laboratory [1]. For a
particular fluid, a reasonable means of satisfying the requirements of industry
for values of the transport properties over a wide range of conditions is
provided by accurate correlations, based on kinetic theory calculation of
available experimental data. In the recent paper [2], the Rainwater�Friend
theory and highly accurate realistic potentials were used to calculate the
viscosity of some typical gases at moderate density (up to 2 mol } dm&3). The
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range of validity was extended to very high densities (up to 40 mol } dm&3)
with the introduction of a corresponding states residual function.

This paper extends the accurate calculation of the viscosity of 14 gases
from the zero-density limit up to a very high density range (up to
40 mol } dm&3 and 900 MPa) over a wide temperature range. Here, the
viscosity, '(T, \) is expressed as

'(T, \)='0(T )[1+NA_3\B'*(T )]+D'(T, \) (1)

where '0 is the viscosity in the zero density limit, B'* is the first order den-
sity correction, namely the reduced second virial viscosity coefficient, \ is
the molar density, NA is Avogadro's constant, _ is the collision diameter,
and D' is the residual viscosity function which includes the higher density
contributions. It is shown that by including a (weak) temperature depen-
dence of D' , the agreement of the predictions with experiment is improved
significantly compared to the previous work [2].

1.1. Viscosity at Zero Density

In this work, the viscosity at zero density, '0 , is based only on the
accurate interatomic potentials via the Chapman�Enskog theory. According
to this theory, '0 can be calculated from [3]

'0=
5

16 \
mkT

? +
1�2 f'

_20(2, 2)*(T*)
(2)

Here m is the molecular mass, k the Boltzmann constant and T is the tem-
perature. 0(2, 2)*(T*) is the reduced collision integral that acts as a first-
moment approximation for the collision processes determining the viscosity,
T*=kT�=, where = is the depth of the potential well. The correction factor,
f' takes into account the higher-moment terms (Sonine polynomials) when
solving the Boltzmann equation for the viscosity. Determination of '0 via
Eq. (2) is based on the calculations [4] of 0(2, 2)*(T*) which depend on
the nature of the interaction potential and reduced temperature T*. In this
work, the most accurate potentials for helium (HFD-B3-FCI1) [5], (neon
(HFD-B) [6], argon (HFD-D1) [7], argon (HFD-ID) [8], krypton
(HFD-B2) [9] and xenon (HFD-B2) [10] are used for the calculation of
the 0(2, 2)*(T*).

In Fig. 1 the calculated 0(2, 2)*(T*) for the noble gases using the above
realistic potentials are plotted versus ln(T*). As shown, to a fairly good
approximation, all the curves coincide at 1�T*�10, which is consistent
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Fig. 1. The two-parameter correlation for ln 0(2, 2)*(T*) as a func-
tion of ln T* for different interatomic potentials. The references for
the potentials are given in the text.

with the fact that the reduced potentials coincide at intermediate inter-
atomic distances; see Fig. 2.

There are two general procedures for the correlation of 0(2, 2)*(T*) in
the literature. One is based on scaling measured values of the viscosity
using

_20(2, 2)*(T*)
f'

=\mkT
? +

1�2 5
16'0

(3)

as a function of temperature for different gases onto a single curve with just
two scale parameters =�k and _ [11]. The most recent formulation of the
two-parameter correlation [12] yields formulae for the range 1�T*�25.

The other procedure is based on the revised corresponding-states
principle of Kestin et al. [11], which is a set of five parameters which
characterize each pair-interaction, together with a fully consistent and
asymptotically correct set of corresponding states collision integrals and
functionals that appear in the rigorous kinetic theory. In order to take
advantage of the correct asymptotic forms at low and high temperatures,
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Fig. 2. Reduced plot of noble-gas potentials, showing deviations
from congruence at large and small separations. rm is the position of
the potential minimum. The references for the potentials are given in
the text.

different temperature regions are given for 0(2, 2)*(T*). The limitation is
that the correlation is based on experimental data for helium at high T*
and also depends on the five parameters for each gas [13, 14].

At the suggestion of J. Kestin, Boushehri et al. carried out a direct
inversion of the temperature dependence of the reduced viscosity to find the
effective reduced intermolecular potential [15]. This inversion showed that
the part of the interatomic potential that dominates the transport coef-
ficient in the range 1�T*�25 is the relatively ``featureless'' repulsive wall,
and that this rather featureless section of the potential could be fitted with
only two parameters. Moreover, this result suggests that any attempt to
extend the two-parameter correlation to lower temperature is likely to fail,
since low-temperature transport properties are dominated by the attractive
wells and tails of the potentials, and small deviations from perfect con-
gruence are apparent at larger distances r�rm , where rm is the position of
the potential minimum (Fig. 2). Since the correlation functions for the
calculation of the viscosity depend on the potential parameters, = and _,
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a ``practical'' two-parameter correlation function for the calculation of
0(2, 2)*(T*) for the temperature range 0.8�T*�500 is proposed.

1.2. Practical Correlation Function for 0 (2, 2)*(T *)

Due to the great advances in developing accurate realistic interatomic
potentials for the noble gases, especially in the last decade, we derived a
new correlation function for 0(2, 2)*(T*) with only two potential parameters,
=�k and _, based on the calculation method of O'Hara and Smith [4].
0(2, 2)*(T*) can be expressed for 0.8�T*�500 as

0(2, 2)(T*)=exp :
6

i=0

a i (ln T*) i (4)

where

a0=4.369_10&1\7.8_10&4, a1=&4.505_10&1\1.3_10&3

a2=5.326_10&2\8.1_10&4, a3=3.519_10&2\9.2_10&4

a4=&1.751_10&2\4.0_10&4, a5=2.773_10&3\7.0_10&5

a6= &1.529_10&4\4.3_10&6

The coefficients ai have been obtained by a least-squares method. Since the
available experimental viscosities of different noble gases are located at
different reduced temperature ranges, the calculated values for 0(2, 2)*(T*)
from light, intermediate (argon), and heavy noble gases are used mostly for
the high, intermediate, and low temperature ranges, respectively in the
least-square procedure. In Table I, the number of data points and the tem-
perature range of each fluid which are used in deriving Eq. (4) and also the
average and maximum differences between the calculated and correlated
values are shown.

Table I. Temperature Range, Number of Data Points, and Deviations for the Practical
Correlation Function, 0(2, 2)*, Eq. (4)

Gas T*min�T*max No. of points 2 (0), avg. (max.)

He 20�500 250 0.30(1.0)
Ne 10�20 20 1.80(2.0)
Ar 1�10 30 0.45(0.84)
Kr 0.5�3 20 0.50(0.84)
Xe 0.5�3 10 0.32(0.90)
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The values of the correction factor f' have been determined by using
the Aziz potentials [5, 7]. This correction does not depend on the used
potential to a large extent, and f' represents a contribution of no more
than 10 in the zero-density values in most cases. f' can be expressed for
0.8�T*�500 as

f'(T*)= :
4

i=0

di (ln T*) i (5)

where the correlation coefficients are obtained via the least square method as

d0=1.001\3.9_10&4, d1=1.843_10&3\3.6_10&4

d2=1.793_10&3\3.6_10&4, d3= &6.604_10&4\1.2_10&4

d4=5.818_10&5\1.1_10&5

It must be noted that our correlation formula that covers the entire tem-
perature range with a single formula is not in conflict with the previous
correlation [13, 14] which gives different formulae for different tempera-
ture ranges. In fact, this correlation gives a more practical formula for the
accurate calculation of '0 of gases in those temperature ranges where most
viscosity data are located. As we show later, this correlation function can
be used to determine the potential parameters of gases.

1.3. Determination of Potential Parameters

It is well known that =�k and _ cannot be determined independently
and that there are different procedures for their determinations [3, 16].
In this work, when an accurate potential function for a gas is known, the
=�k and _ of that potential are used (for noble gases), otherwise they are
regarded as adjustable parameters in order to give the best agreement
between the calculated zero density viscosity from the Chapman�Enskog
theory, Eqs. (2)�(5), and the accurate experimental zero-density viscosity
values. These potential parameters are included in Table II for different
gases. The calculated zero-density viscosity values using these potential
parameters and our correlation function, via Eqs. (2), (4), and (5) are com-
pared with the experimental data in Table II for the different gases.

2. VISCOSITY IN THE MODERATE DENSITY RANGE

The viscosity of gases at moderate densities (up to 2 mol } dm&3) is
calculated as

'(T, \)='0(T )[1+NA_3\B'*(T )] (6)
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Table II. Average and Maximum Percent Error of the Zero-Density Viscosity Using Eq. (4)

Fluid Ref. _ (nm) =�k (K)
Tmin�Tmax

(K)
100 |'0

exp&'0
cal |�'

0
exp ,

avg. (max.)
No. of
points

He 34 0.2641 10.956 100�5000 0.40(0.86) 30
Ne 34 0.2759 42.250 100�5000 2.9(5.30) 30
Ar 34 0.3350 143.23 100�5000 0.95(1.30) 30
Kr 34 0.3572 201.35 120�5000 0.35(0.75) 30
Xe 34 0.3890 282.80 165�5000 0.33(0.70) 30
O2 39 0.3516 95.666 260�1400 0.17(0.73) 21
N2 40 0.3728 85.229 180�1100 0.24(1.00) 18
F2 41 0.3327 135.74 70�300 0.25(0.46) 18
CO 15 0.3678 93.480 273�3273 0.51(1.20) 21
NO 15 0.3507 118.75 273�3273 0.60(1.10) 21
NO2 15 0.3703 266.80 333�3273 0.60(1.60) 18
CO2 15, 47, 42 0.3800 233.03 313�3273 0.66(1.50) 59
CH4 15, 47 0.3791 141.56 273�3273 0.50(0.92) 49
CF4 15 0.4718 124.76 273�3273 0.81(1.60) 21
SF6 15, 47 0.5340 184.93 220�3273 0.50(1.80) 48
CH3OH 46 0.3410 668.19 363�593 0.85(1.70) 7
C2H4 15 0.4071 244.30 293�2273 0.53(1.20) 20
C2H6 15, 53 0.4371 241.90 273�2273 0.52(1.40) 20
C3H8 49 0.4721 353.35 230�600 0.44(0.86) 30
n-C4H10 48 0.4949 475.76 230�626 0.23(0.65) 27
C6H6 51 0.4898 651.02 333�623 0.22(0.54) 9
iso-C4H10 44, 48 0.5014 448.40 220�600 0.16(0.32) 17
c-C6 H12 50 0.6056 353.20 353�623 0.30(0.94) 11
neo-C5H12 50 0.6071 288.71 298�633 0.30(0.94) 10
C6H5 OH 52 0.5702 756.81 443�623 0.27(0.48) 10

In the Rainwater�Friend theory [2, 17, 18], which deals with realistic
potentials, the reduced second viscosity virial coefficient, B'* is assumed to
be the sum of three contributions

B'*=B'
(2M )*+B'

(3M )*+B'
(MD)* (7)

B'
(2M )* represents the contribution from the nonlocality of monomer�

monomer collisions [19�22], B'
(3M )* accounts for the presence of a third

particle during a monomer-monomer collision [23�25], and B'
(MD)* is the

contribution from the monomer-dimer collisions [16, 26, 27]. In this work,
the most accurate potentials for the noble gases [5�10] are used for the
calculation of the B'*(T*). The reduced second viscosity virial coefficient
B'*(T*) of a gas is a function of reduced potential and reduced tempera-
ture. As shown in Ref. 2, to a reasonable approximation, all of these curves
coincide. The corresponding states behavior of B'*(T*) over the entire
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range of T* or the noble gases can be attributed to the superimposability
of their reduced potentials. A good fit to the corresponding state function
in powers of (T*)&1 or the range 0.8�T*�500 is the sixth-order poly-
nomial

B'*= :
6

i=0

bi (T*)&i (8)

where

b0=&0.2201\0.0057, b1=2.075\0.20

b2=5.512\1.2, b3=&13.91\2.6

b4=10.82\2.2, b5=&4.263\1.2

b6=0.5245\0.21

with the coefficients bi again obtained via a least squares fit. It must be
noted that due to the extended temperature range, these coefficients differ
slightly from those of previous work [2]. In Fig. 3, B'* from Eq. (8) is

Fig. 3. Reduced second viscosity virial coefficient B'* versus reduced
temperature using Eq. (8) and Vogel et al. correlation [28].
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compared with a new empirical equation for B'* , which was presented by
Vogel et al. [28].

In summary, according to this correlation, the viscosity of all gases at
any specified temperature and density (pressure) can be easily calculated
via the Eqs. (6) and (8). As shown before [2], the validity of Eq. (6), is
up to 2 mol } dm&3 and it is also applicable for calculation of the viscosity
of gases other than the noble gases [2]. For consistency, the scaling
parameters =�k and _ used in Eq. (8) were chosen to coincide with those
used for the zero-density viscosity representation. The potential parameters
are given in Table II for gases.

3. VISCOSITY IN THE HIGH DENSITY RANGE

The viscosity behavior of supercritical gases at high pressures is
unusual to some extent. At high densities, the viscosity-density isotherms of
gases generally intersect at a common point, (with density of \com) at
which the viscosity of the gas is independent of temperature. As Figs. 4 and
5 show, this common point occurs at about 2.4\cri for Ar and 2\cri for

Fig. 4. Intersection of viscosity-density isotherms of argon at a
common point. Note that the density of the common point is about
2.4\cri .
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Fig. 5. Same as Fig. 4 for methane. Note that the density of the
common point is about 2\cri .

CH4 , where \cri is the critical density of the gas. It is also possible to show
that \com is about 2.4\cri for Kr, 2.2\cri for O2 , 2\cri for Xe, CO2 , C2H6 ,
and n-C4 H10 , and 1.8\cri for C3H8. At densities greater than \com , (which
is between 1.8\cri and 2.4\cri) the viscosity of gases decreases with increas-
ing of temperature, similar to what happens in liquids. Of course a phase
transition to liquids is impossible for supercritical gases.

In dilute gases, the most important mechanism for transport of
momentum between layers of flowing fluid is the kinetic contribution.
Molecules are transferred from one part of the fluid to another part and
carry momentum along with themselves. As the temperature increases, the
average momentum of the molecules increases and the mean free path of
the molecules will increase, so the momentum transfer increases, and, as a
result, the viscosity increases. As the density of the fluid increases, the mean
free path is shorter and the molecules do not have much freedom of trans-
lational motion. In this case, the molecules are close together and the inter-
molecular potential between them becomes larger. To make the layers of
fluid move over one another, a force has to be exerted to overcome the
attractive forces between the layers. This is the origin of viscosity in liquids.
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As the temperature increases at high density, the molecules have more
kinetic energy and are able to overcome the ``activation energy'' of the
forces between adjacent layers. Thus, at high density (higher than the com-
mon point density), ``collisional transfer'' rather than the kinetic transfer is
the principal mechanism for viscosity, and the viscosity decreases with
increasing temperature. At the common point, the increase of viscosity due
to kinetic momentum transfer counterbalances the decrease of viscosity due
to collisional transfer, and it is possible to consider the viscosity of the gas
as being independent of temperature at this density.

At densities beyond the range of the Rainwater�Friend theory, use is
made of the empirical observations that the transport properties show a
regular dependence on density. The dependence of a transport property
(here '(T, \)) can always be written [1] as the sum of three contributions

'(T, \)='0+2'(T, \)+2'c(T, \) (9)

'0(T ) is the zero-density limit of viscosity, 2'(T, \) is the residual viscosity
and 2'c(T, \) is the viscosity critical enhancement. Since in this work we

Fig. 6. The assumption of temperature independence of residual
viscosity, Eq. (12), is valid for argon (a monatomic gas).
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are dealing with gases outside their critical range, our discussion of the
behavior of the gas can ignore 2'c(T, \), and residual viscosity is defined
as

2'(T, \)='(T, \)&'0(T ) (10)

The residual transport properties (here 2') are often approximated as
being only a function of density. This has been a useful basis for correlating
data within stated density and temperature intervals [1, 2]. However, it
should be noted that the residual properties are not rigorously independent
of temperature, which can be observed when data are available over a wide
range of temperatures at elevated pressures. Specifically, isotherms of the
residual viscosity data do not lie on a single curve. In order to ``weaken''
this temperature dependence, we redefine the residual viscosity as

D'(T, \)='exp&'0[1+NA_3\B'*] (11)

Therefore, the viscosity of a gas (outside the critical region) can be written
as Eq. (1).

Fig. 7. The residual viscosity, Eq. (12), is temperature independent
for densities up to about 15 mol } dm&3 for CH4 .
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In previous work [2], the residual viscosity was taken as temperature
independent. Now we show that this assumption is nearly valid for
monatomic gases, such as argon (see Fig. 6), and the temperature
dependence of the residual viscosity is significant for polyatomic gases.
(See Figs. 7 and 8). In this work, we show that by including this (weak)
temperature dependence of the residual viscosity, it is possible to improve
significantly the results.

Once the residual viscosity data have been generated via Eq. (11),
D'(T, \) can be fitted by a suitable polynomial. There is no theoretical
guidance to the functional form of D'(T, \), Eq. (11), but we found that it
can be fitted with the following polynomial which consists of a temperature
contribution plus a density contribution (a Pade� approximation),

D'(T, \)=(1+aT )2 b1\+b2 \2

1+c1\+c2\2 (12)

All of the five polynomial coefficients for each gas are adjusted by fitting
accurate viscosity data over a wide temperature-pressure range via Eq. (1).
These coefficients, which are obtained via a least-square method, are given
in Table III for different gases.

Fig. 8. The residual viscosity, Eq. (12), of iso-C4H10

(a heavy polyatomic gas) is not temperature-independent
over the entire density range.
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Although there are some temperature dependent correlations for
residual transport properties in the literature, our 5-coefficient correlation
formula, Eq. (12), yields better results than other correlations with many
coefficients. (For example, there are in the literature correlation functions
for the residual viscosity with 30 coefficients for ethane [29], with 30 coef-
ficients for nitrogen [30] and 32 coefficients for methane [31]).

In summary, according to this correlation, the viscosity of each gas at
any specified temperature and density (pressure) can be easily calculated
via the equation

D'(T, \)='0[1+NA _3\B'*]+(1+aT )2 b1\+b2 \2

1+c1 \+c2\2 (13)

As we showed, '0 , B'* , and D' can be obtained from Eqs. (2), (8), and (12)
respectively without using any additional measured data. All the necessary
parameters are given in Tables II and III for different gases.

In Fig. 9, calculated viscosity-density isotherms of CH4 via Eq. (13)
intersect at a common point. The density of this point is very close to the
value obtained from the experimental data (see Fig. 5).

Fig. 9. Intersection of the calculated viscosity-density isotherms of CH4,
via Eq. (13). The parameters of the equation are from Tables II and III.
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4. COMPARISON WITH EXPERIMENTAL DATA

The experimental and calculated values of '0 based on the Chapmann�
Enskog theory, Eqs. (2), (4), and (5) are compared in Table II for 25
different gases over the temperature range up to temperatures as high as
5000 K. The average absolute percent deviation of the calculated values of
'0 (except for Ne, for which is about 3) is 0.4.

Fig. 10. The percent deviation between the experimental data and calculated
values, 2, 0 via Eq. (13) for different gases over a wide density range. The refer-
ences for the experimental data are given in Table IV.
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Table IV. Average and Maximum Percent Error of the Viscosity Using Eq. (13)

Fluid Ref.
\Max.

(mol } dm&3)
Tmin�Tmax

(K)
100 |'0

exp&'0
cal |�'

0
exp ,

avg. (max.)
No. of
points

He 35 8.3 223�337 0.15(0.80) 23
Ne 35 8.3 223�337 0.18(0.40) 11
Ar 36 44.0 300�500 0.65(3.00) 111
Kr 37 27.0 298�348 0.25(0.65) 70
Xe 38 16.0 300�500 0.50(1.60) 60
O2 39 16.5 500�1300 0.18(0.80) 72
N2 40 24.0 220�1100 0.52(3.00) 120
F2 41 16.3 200�300 0.90(2.70) 27
CO2 43, 44 25.5 380�1100 0.60(2.50) 91
CH4 45 25.3 300�600 0.92(3.70) 66
C2H6 45 14.0 400�600 0.85(4.70) 71
C3H8 45 12.3 400�600 0.60(2.70) 71
n-C4 H10 45 8.0 450�600 0.60(4.50) 60
Iso-C4 H10 45 7.4 400�600 0.36(2.50) 71

The percent average deviation between the most accurate viscosity
data of the monatomic, diatomic and polyatomic gases and calculated
values via Eq. (13) is plotted in Fig. 10 over a wide density range. The
results are also summarized in Table IV for different supercritical gases,
including the maximum density \max , the temperature range, average
absolute percent deviation of the calculated viscosity based on Eq. (13),
along with the number of data points. The potential parameters are also
given.

5. DISCUSSION

In this work, a correlation function for the calculation of the viscosity
of supercritical gases is obtained which is valid over a wide temperature
range and pressures up to 900 MPa (density up to 43 mol } dm&3), with an
accuracy that is within experimental uncertainty. Highly accurate realistic
potentials are used for the calculation of the zero-density viscosity, '0 , and
initial density dependence of the viscosity, \B'* , using the Chapman�
Enskog and the Rainwater�Friend theory, respectively. Since the realistic
potentials used were generated on a sound theoretical basis and have been
optimized using a large number of microscopic properties, including data
for the viscosity and thermal conductivity, such a multiproperty fit ensures
that the proposed potentials are useful throughout the entire temperature
range, and therefore the correlation function, Eq. (4), for 0(2, 2)*(T*) based
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on these potentials can be taken as the most precise two-parameter correlation
function that works over a very wide temperature range (0.8�T*�500).
This correlation function was used to adjust two potential parameters,
=�k and _, for the polyatomic gases. Using this new correlation function,
the zero-density viscosity, '0 , of different gases can be calculated over a
wide temperature range, 80�T�5000 K with a mean error estimate of
10 (for neon 20).

The realistic potentials were also used for the calculation of the second
virial viscosity coefficient over the wide temperature range, 0.8�T*�500
for the noble gases. Due to the similarity of the reduced potentials of the
noble gases, B'* follows a corresponding states function over the whole
range of reduced temperatures. It was demonstrated that this correspond-
ing states function, B'*, which is based on the noble gas potentials, works
very well for other gases [2]. This can be attributed to the dominant
behavior of the ``featureless'' repulsive wall of the potentials on the thermo-
physical properties of dense fluids.

At high densities, beyond the range of the Rainwater�Friend theory,
a residual viscosity function has been presented. Although it is usual to
take this function to be temperature independent [32], it was shown that
this can not be a suitable approximation and that the residual viscosity
function is indeed temperature dependent, especially for polyatomic gases.

In the previous work [2], a corresponding states scheme based on a
residual viscosity function, D' , was developed for the prediction of the
viscosity of different gases. As shown in Table IV of Ref. 2, the success of
the corresponding states deteriorates with increasing number of atoms in
the molecule and consequently with increasing number of internal degrees
of freedom. Although, the thermal conductivity is affected significantly by
the presence of the internal degrees of freedom, viscosity and diffusion are
not appreciably affected. Thus the theory for monatomic gases may be
applied to polyatomic molecules with considerable success, provided that
the molecules are not too non-spherical [33].

This is in agreement with our observations that the assumption of a
temperature-independent residual viscosity is valid for monatomic gases
such as Ar over the entire density range (see Fig. 6). This assumption is
also valid over a limited density range for a polyatomic gas such as CH4

(see Fig. 7). This assumption is not valid for a heavy polyatomic gas such
as iso-C4 H10 (see Fig. 8). Therefore, the extent of the success of the corre-
sponding states for the calculation of the viscosity of polyatomic gases
depends on the extent of the validity of the assumption of a temperature-
independent residual viscosity function, D' . In this work, it is shown by
including a ``weak'' temperature dependence in this function, D' , the
accuracy of the results improved significantly. A correlation function for
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Fig. 11. Comparison of the percent deviation between the experi-
mental data and calculated values, 2, 0 of CH4: (a) this work, via
Eq. (13) and (b) via the residual function of Ref. 31.

the calculation of the residual viscosity function is presented for 14 super-
critical gases, over a wide temperature range and pressures up to
900 MPa, with mean error estimate 0.50 and maximum error less than
50. The accuracy of the predicted viscosity values using this residual
viscosity function is higher than the predicted values with other residual
viscosity functions with many parameters. In Fig. 11, the accuracy of the
predicted viscosity values of CH4 via Eq. (13) is compared with the values
obtained with the 32-parameter residual function of Millat [31]. As
shown, the accuracy of our residual function is higher especially at high
densities.
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